Коническое сечение

Кони́ческое сече́ние или коника есть пересечение плоскости с круговым конусом. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того существуют вырожденные сечения: точка, прямая и пара прямых, а также окружность, которую можно рассматривать как частный случай эллипса.

Конические сечения могут быть получены как пересечение с плоскостью двустороннего конуса

a2z2 = x2 + y2Декартовой системе координат)

Здесь

a = \operatorname{tg} \theta

θ — угол между образующей конуса и его осью.

Если плоскость проходит через начало координат, то получается вырожденное сечение. В невырожденном случае,

  • если секущая плоскость пересекает все образующие конуса в точках одной его полости, получаем эллипс,
  • если секущая плоскость параллельна одной из касательных плоскостей конуса, получаем параболу и
  • если секущая плоскость пересекает обе полости конуса, получаем гиперболу.

Уравнение кругового конуса квадратично, стало быть все конические сечения являются квадриками, также все квадрики плоскости являются коническими сечениями (хотя две параллельные прямые образуют вырожденную квадрику которая не может быть получена как сечение конуса, но всё же обычно считается «вырожденным коническим сечением»).

Содержание

Эксцентриситет

Все невырожденные конические сечения, кроме окружности, можно описать следующим способом:

Выберем на плоскости точку F и прямую d и зададим вещественное число e>0. Тогда геометрическое место точек, для которых расстояние до точки F и до прямой d отличается в e раз (на рисунке |FM| = e\cdot |MM'|,\ MM' \bot d,\ e=1/2), является коническим сечением.

Точка F называется фокусом конического сечения, прямая dдиректрисой, число eэксцентриситетом.

В зависимости от эксцентриситета, получится:

  • при e < 1 — эллипс;
  • при e = 1 — парабола;
  • при e > 1 — гипербола.

Для окружности полагают e=0.

Свойства

  • Через любые пять точек на плоскости, никакие три из которых не лежат на одной прямой, можно провести единственное коническое сечение.

Группы преобразований

  • Эксцентриситет двух невырожденных конических сечений совпадает тогда и только тогда, когда они могут быть переведены друг в друга преобразованием подобия.
  • Аффинные преобразования сохраняют только знак эксцентриситета, т.е. с точки зрения аффинной геометрии существует только три различных невырожденных конических сечения: эллипс, парабола и гипербола.
  • Все невырожденные конические сечения неразличимы в проективной геометрии.

Координатное представление

Декартовы координаты

В декартовых координатах, конические сечения описываются общим квадратным многочленом:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

Иначе говоря, конические сечения являются квадриками. Знак дискриминанта

B2 - 4AC,

определяет тип конического сечения.

  • Если дискриминант меньше нуля, то это эллипс, точка или пустое множество.
  • Если дискриминант равен нулю, то это парабола, прямая или пара параллельных прямых.
  • Если дискриминант больше нуля, то это гипербола или пара пересекающихся прямых

Полярные координаты

В полярных координатах (ρ,θ), с центром в одном из фокусов нулевым направлением вдоль главной оси, коническое сечение представляется уравнением

\rho (1 - e \cos \theta) = l \,

где е обозначает эксцентриситет и l постоянная.

История

Конические сечения были известны ещё математикам Древней Греции. Наиболее полным сочинением, посвящённым этим кривым, были «Конические сечения» Аполлония Пергского (около 200 до н. э.).

Литература

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home