Теплоноситель ядерного реактора

Теплоноси́тель в ядерном реакторе, жидкое или газообразное вещество, пропускаемое через активную зону реактора и выносящее из неё тепло, выделяющееся в результате реакции деления ядер.

Содержание

Общие сведения

В двухконтурных энергетических реакторах (например, ВВЭР) теплоноситель из реактора поступает в парогенератор, в котором вырабатывается пар, приводящий в действие турбины, а в одноконтурных реакторах (например, РБМК) сам теплоноситель (пароводяной или газовый) может служить рабочим телом турбинного цикла. В исследовательских (например, материаловедческих) и специальных реакторах (например, в реакторах для накопления радиоактивных изотопов) теплоноситель только охлаждает реактор, полученное тепло не используется.

К теплоносителям предъявляют следующие требования:

  • Слабое поглощение нейтронов (в тепловых реакторах) либо слабое замедление их (в быстрых реакторах);
  • Химическая стойкость в условиях интенсивного радиационного облучения;
  • Низкая коррозионная активность по отношению к конструкционным материалам, с которыми теплоноситель находится в контакте;
  • Высокий коэффициент теплопередачи;
  • Большая удельная теплоёмкость;
  • Низкое рабочее давление при высоких температурах.

В тепловых реакторах в качестве теплоносителя используют воду (обычную и тяжёлую), водяной пар, органической жидкости, двуокись углерода; в быстрых реакторах — жидкие металлы (преимущественно натрий), а также газы (например, водяной пар, гелий). Часто теплоносителем служит жидкость, являющаяся одновременно и замедлителем.

Особенности применения

Лёгкая вода

Один из самых распространённых теплоносителей — вода. Природная вода содержит небольшое количество тяжёлой воды (0,017%), различных примесей и растворённых газов. Присутствие примесей и газов делает воду химически активной с металлами. Поэтому воду, прежде чем использовать её как теплоноситель, очищают от примесей методом выпаривания и деаэрируют, то есть удаляют из воды газы.

В первом контуре циркулирует радиоактивная вода. Основной источник активности воды — это примеси, появление которых в воде связано с коррозией узлов первого контура и технологическими загрязнениями делящимися веществами внешней поверхности ТВЭЛов. Концентрацию радиоактивных примесей в воде снижают фильтрованием. Под действием нейтронов на ядрах кислорода идут реакции 18O(n, γ)19O; 16O(n, p)16N, в которых образуются радиоактивные ядра 19O (T½=29,4 с) и 16N (T½=4 с). Однако активность 19O и 16N мала по сравнению с активностью примесей.

Недостатками воды как теплоносителя являются низкая температура кипения (100°С при давлении 1 атм) и поглощение тепловых нейтронов. Первый недостаток устраняется повышением давления в первом контуре. Поглощение тепловых нейтронов водой компенсируют применением ядерного топлива на основе обогащённого урана.

См. также:

Тяжёлая вода

Тяжёлая вода по своим химическим и теплофизическим свойствам мало отличается от обычной воды. Она практически не поглощает нейтронов, что даёт возможность использовать в качестве ядерного топлива природный уран в реакторах с тяжеловодным замедлителем. Однако тяжёлая вода пока мало применяется в реакторостроении ввиду её высокой стоимости.

См. также

Жидкие металлы

Из жидкометаллических теплоносителей наиболее освоен натрий. Он химически активен с большинством металлов при сравнительно низкой температуре, и эта активность натрия обусловливается примесью окислов натрия. Поэтому натрий тщательно очищают от окислов, после чего он не реагирует со многими металлами (Mo, Zr, нержавеющая сталь и др.) до 600—900°С.

См. также:

Органические жидкости

Из числа опробованных органических жидкостей наиболее стабильными в условиях повышенных температур и радиоактивного облучения оказались некоторые из полифенилов, в том числе дифенил и трифенил. Однако, несмотря не некоторые преимущества, такие теплоносители оказались слишком нестойкими к нейтронному облучению, поэтому промышленно такие реакторы не применялись.

См. также:

Газ

Основной газовый теплоноситель — углекислый газ. Он недорог, характеризуется повышенными по сравнению с другими газами плотностью и объёмной теплоёмкостью. Коррозионное воздействие углекислого газа на металлы зависит от содержания кислорода. Он присутствует в углекислом газе как примесь и, кроме того, образуется при высоких температурах в процессе диссоциации молекул CO2 на окись углерода CO и кислород O2.

См. также:

Литература

  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. — М.: Атомиздат, 1979.
  • БСЭ
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home