Теорема Чевы

Теорема Чевы — это классическая теорема геометрии треугольника. Эта теорема аффинная, т. е. она может быть сформулирована используя только характеристики сохраняющиеся при аффинных преобразованиях. Теорема названа в честь итальянского математика Джованни Чевы, который доказал её в 1678 году.

Начнём с определения: Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой.

Три чевианы AA',BB',CC' треугольника \triangle ABC конкурентны тогда и только тогда, когда

|BA'|\cdot |CB'|\cdot |AC'|=|CA'|\cdot |AB'|\cdot |BC'|

Эту теорему можно обобщить на случай когда точки A',B',C' лежат на продолжениях сторон BC,CA,AB. Для этого надо воспользоваться «отношением направленных отрезков», оно определено для двух направленных отрезков XY и ZT на одной прямой (или на параллельных прямых) и обозначается XY / ZT

Пусть A',B',C' лежат на прямых BC,CA,AB треугольника \triangle ABC. Прямые AA',BB',CC' конкурентны тогда и только тогда, когда

\frac{BA'}{A'C}\cdot \frac{CB'}{B'A}\cdot \frac{AC'}{C'B}=1

Ссылки

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home