Ковариационная матрица

Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей - это матрица, составленная из попарных ковариаций элементов двух случайных векторов.

Определения

  • Пусть \mathbf{X}:\Omega \to \mathbb{R}^n\;,\mathbf{Y}:\Omega \to \mathbb{R}^m - два случайных вектора размерности n и m соответственно. Пусть также случайные величины X_i,Y_j,\; i=1,\ldots, n,\; j = 1,\ldots, m имеют конечный второй момент, то есть X_i,Y_j \in L^2. Тогда матрицей ковариации векторов \mathbf{X},\mathbf{Y} называется
\Sigma = \mathrm{cov}(\mathbf{X},\mathbf{Y}) = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}\mathbf{X})(\mathbf{Y} - \mathbb{E}\mathbf{Y})^{\top}\right],

то есть

Σ = (σij),

где

\sigma_{ij} = \mathrm{cov}(X_i,Y_j) \equiv \mathbb{E}\left[(X_i - \mathbb{E}X_i) (Y_j - \mathbb{E}Y_j)\right],\; i=1,\ldots, n,\; j = 1,\ldots, m.
  • Если \mathbf{X} \equiv \mathbf{Y}, то Σ называется матрицей ковариации вектора \mathbf{X} и обозначается \mathrm{cov}(\mathbf{X}).

Свойства матриц ковариации

  • Сокращённая формула для вычисления матрицы ковариации:
\mathrm{cov}(\mathbf{X}) = \mathbb{E}\left[\mathbf{X} \mathbf{X}^{\top}\right] - \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}\left[\mathbf{X}^{\top}\right].
  • Матрица ковариации случайного вектора неотрицательно определена:
\mathrm{cov}(\mathbf{X}) \ge 0.
  • Смена масштаба:
\mathrm{cov}\left(\mathbf{a}^{\top} \mathbf{X}\right) = \mathbf{a}^{\top} \mathrm{cov}(\mathbf{X}) \mathbf{a},\; \forall \mathbf{a} \in \mathbb{R}^n.
  • Матрица ковариации афинного преобразования:
\mathrm{cov}\left(\mathbf{A} \mathbf{X} + \mathbf{b}\right) = \mathbf{A} \mathrm{cov}(\mathbf{X}) \mathbf{A}^{\top},

где \mathbf{A} - произвольная матрица размера n \times n, а \mathbf{b}\in \mathbb{R}^n.

  • Перестановка аргументов:
\mathrm{cov}(\mathbf{X},\mathbf{Y}) = \mathrm{cov}(\mathbf{Y},\mathbf{X})^{\top}
  • Матрица ковариации аддитивна по каждому аргументу:
\mathrm{cov}(\mathbf{X}_1 + \mathbf{X}_2,\mathbf{Y}) = \mathrm{cov}(\mathbf{X}_1,\mathbf{Y}) + \mathrm{cov}(\mathbf{X}_2,\mathbf{Y}),
\mathrm{cov}(\mathbf{X},\mathbf{Y}_1 + \mathbf{Y}_2) = \mathrm{cov}(\mathbf{X},\mathbf{Y}_1) + \mathrm{cov}(\mathbf{X},\mathbf{Y}_2).
  • Матрица ковариации независимых векторов равна нулю. Если \mathbf{X} и \mathbf{Y} независимы, то
\mathrm{cov}(\mathbf{X},\mathbf{Y}) = \mathbf{0}.
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home