Классификация Петрова

В дифференциальной геометрии и теоретической физике, классификация Петрова описывает возможные алгебраические симметрии тензора Вейля для каждого события на псевдоримановом многообразии.

Эта классификация активней всего используется при изучении точных решений уравнений Эйнштейна, хотя вообще говоря представляет собой абстрактный математический результат, не зависящий от какой-либо физической интерпретации. Классификация была впервые открыта в 1954 году А. З. Петровым и в 1957 независимо Феликсом Пирани.

Теорема о классификации

Тензор ранга 4, например тензор Вейля, в каждой точке многообразия можно представить как линейный оператор C : T_{p} \times T_{p} \rightarrow T_{p} \times T_{p}, действующий в векторном пространстве бивекторов:

X^{ab} \rightarrow \frac{1}{2} \, {C^{ab}}_{mn} X^{mn}

В этом случае естественно поставить задачу нахождения собственных значений λ и собственных векторов (или собственных бивекторов) Xab, таких что

\frac{1}{2} \, {C^{ab}}_{mn} \, X^{mn} = \lambda \, X^{ab}

В четырехмерных псевдоримановых многообразиях в каждой точке пространство бивекторов шестимерно. Однако, симметрии тензора Вейля ограничивают размерность пространства собственных бивекторов до четырех. Таким образом, тензор Вейля в данной точке может иметь максимум четыре линейно независимых собственных бивектора.

Точно так же как в обычной теории собственных векторов линейного оператора, собственные бивекторы тензора Вейля могут быть кратными. Кратность собственных бивекторов указывает на некоторую дополнительную алгебраическую симметрию тензора Вейля в данной точке; это означает, что тип симметрии тензора Вейля можно определить, решая уравнение 4-го порядка для его собственных значений.

Собственные бивекторы тензора Вейля ассоциируются с определенными изотропными векторами на многообразии, которые называются главные изотропные направления (в данной точке). Теорема о классификации утверждает, что существует ровно шесть возможных типов алгебраической симметрии, которые известны как типы Петрова:


  • Тип I  : четыре главных изотропных направления,
  • Тип II : одно двукратное и два однократных главных изотропных направления,
  • Тип D  : два двукратных изотропных направления,
  • Тип III: одно трехкратное и одно однократное направление,
  • Тип N  : одно изотропное направление с кратностью 4,
  • Тип O  : тензор Вейля равен нулю.

Тензор Вейля типа I (в точке) называется алгебраически общим; тензоры остальных типов называются алгебраически специальными. Различные точки пространства-времени могут иметь различный тип Петрова. Возможные переходы между типами Петрова показаны на рисунке, который также можно интерпретировать так, что некоторые типы Петрова более специальные чем другие. Например, тип I, наиболее общий тип, может выродиться до типов II или D, в то время как тип II может перейти в типы III, N, или D.

Примеры

Для некоторых точных решений уравнений Эйнштейна тензор Вейля имеет один и тот же тип в каждой мировой точке:

  • метрика Керра в вакууме имеет тип D,
  • Пространство Робинсона-Траутмана - тип III,
  • pp-волны имеют тип N,
  • метрика Фридмана-Робертсона-Уокера - везде тип O.

Вообще, произвольное сферически-симметричное пространство-время должно быть алгебраически специальным, а любое статическое пространство-время должно иметь тип D.

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home