Водород

Водород (H)
Атомный номер 1
Внешний вид газ без цвета вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
1,00794 а. е. м. (г/моль)
Радиус атома 79 пм
Энергия ионизации
(первый электрон)
1311,3 кДж/моль (эВ)
Электронная конфигурация 1s1
Химические свойства
Ковалентный радиус 32 пм
Радиус иона 54 (−1 e) пм
Электроотрицательность
(по Полингу)
2,20
Электродный потенциал
Степени окисления 1, −1
Термодинамические свойства
Плотность 0,0708(при -253 °C) г/см³
Удельная теплоёмкость 14,267 Дж/(K·моль)
Теплопроводность 0,1815 Вт/(м·K)
Температура плавления 14,01 K
Теплота плавления 0,117 кДж/моль
Температура кипения 20,28 K
Теплота испарения 0,904 кДж/моль
Молярный объём 14,1 см³/моль
Кристаллическая решётка
Структура решётки гексагональная
Период решётки 3,750 Å
Отношение c/a 1,731
Температура Дебая 110,00 K

Водоро́д — бесцветный газ, первый элемент периодической системы элементов. Самое лёгкое вещество. Ион самого распространённого изотопа водорода ¹H — протон. Некоторые изотопы водорода имеют собственные названия: ¹H — протий (Н), ²H — дейтерий (D) и ³H — тритий (T). Широко распространён в природе, горюч.

Содержание

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик А. Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène (от греческого hydor — вода и gennao — рождаю) — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году.

Получение

Водород можно получить многими способами. В промышленности для этого используют природные газы, а также газы, получаемые при переработке нефти, коксовании и газификации угля и других топлив. При производстве водорода из природного газа (основной компонент — метан) проводят его каталитическое взаимодействие с водяным паром и неполное окисление кислородом:

CH4 + H2O = CO + 3H2 и CH4 + 1/2 O2 = CO2 + 2H2

Выделение водорода из коксового газа и газов нефтепереработки основано на их сжижении при глубоком охлаждении и удалении из смеси газов, сжижаемых легче, чем водород. При наличии дешёвой электроэнергии водород получают электролизом воды, пропуская ток через растворы щелочей. В лабораторных условиях водород легко получить взаимодействием металлов с кислотами, например, цинка с соляной кислотой.

Физические свойства

Газообразный водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода.

В молекуле ортоводорода (т. пл. -259,20 °С, т. кип. -252,76 °С) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. -259,32 °С, т. кип. -252,89 °С) — противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что дает возможность изучить свойства отдельных аллотропных форм.

Химические свойства

Молекула водорода состоит из двух атомов. Химическая связь в молекуле водорода — ковалентная неполярная, так как образована атомами с одинаковой электроотрицательностью (атомами одного вида). Общая связывающая электронная пара находится в середине между ядрами взаимодействующих атомов. Благодаря обобщению электронов молекула водорода более энергетически устойчива, чем отдельные атомы водорода.

Химическая связь в молекуле водорода прочная: чтобы разорвать все молекулы водорода в 1 моль простого вещества, необходимо затратить энергию в 436 кДж, поэтому активность молекулярного водорода при обычной температуре мала. Для разрыва связи требуется активация молекулы — необходимы повышение температуры, электрическая искра, свет.

Для водорода характерны следующие реакции с простыми веществами (с Al, B, Si, P соединения водорода получают косвенным путём):

Взаимодействие с неметаллами

При поджигании или в присутствии платинового катализатора реагирует с кислородом

O2 + 2H2 = 2H2O, реакция протекает со взрывом.

Смесь двух объёмов водорода и одного объёма кислорода называется гремучим газом.

При нагревании водород обратимо взаимодействует с серой:

S + H2H2S

С азотом — при нагревании, повышенном давлении и в присутствии катализатора (железо):

N2 + 3H2 = 2NH3

С галогенами образует галогеноводороды:

F2 + H2 = 2HF, реакция протекает со взрывом при любой температуре,
Cl2 + H2 = 2HCl, реакция протекает только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2 = CH4

Взаимодействие со щелочными и щёлочноземельными металлами

Водород образует с активными металлами гидриды:

Na + H2 = 2NaH
Ca + H2 = CaH2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH2 + 2H2O = Ca(OH)2 + 2H2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H2 = Cu + H2O
Fe2O3 + 3H2 = 2Fe + 3H2O
WO3 + 3H2 = W + 3H2O

Гидрирование органических соединений

При действии водорода на ненасыщенные углеводороды в присутствии никель-катализатора и повышенной температуре происходит реакция гидрирования:

CH2=CH2 + H2 = CH3-CH3

Водород восстанавливает альдегиды до спиртов:

CH3CHO + H2 = C2H5OH

Геохимия водорода

Водород — основной строительный материал вселенной. Это самый распространённый элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.

На Земле содержание водорода понижено по сравнению с Солнцем, гигантскими планетами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована и водород вместе с другими летучими элементами покинул планету во время аккреции или вскоре после неё.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение

Водород используют при синтезе аммиака NH3, хлороводорода HCl, метанола СН3ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием природных растительных масел получают твёрдый жир — маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода с водородом используют при сварке.

Одно время высказывалось предположение, что в недалёком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды — довольно энергоёмкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500—600 °C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с её помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты.

Атомарный водород используется для Атомно-водородной сварки.

Ссылки


Периодическая система элементов
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home