Аксиома параллельности Евклида

Аксиома параллельности Евклида (или пятый постулат) — одна из аксиом, лежащих в основании классической планиметрии впервые описанной Евклидом в своей книге «Начала».


И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, (сумма которых) меньше двух прямых, то продолженные эти прямые неограниченно встретятся с той стороны, где углы меньше двух прямых.


На современном языке:

Если сумма внутренних углов с общей стороной, образованных двумя прямыми при пересечении их третьей, с одной из сторон от секущей меньше 180°, то эти прямые пересекаются, и притом по ту же сторону от секущей.


Эквивалент аксиомы:

В плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну прямую, параллельную данной.


В геометрии Лобачевского вместо нее используется аксиома: «в плоскости через точку, не лежащую на данной прямой, можно провести по крайней мере две прямые, не пересекающиеся с данной». Что позволяет создать альтернативную внутренне логически непротиворечивую систему.

Попытки доказательства

Пятый постулат выглядел более сложным, чем остальные исходные утверждения, кроме того, первые 26 предложений в «Началах» доказываются без его помощи. Математики с древних времён пытались исключить пятый постулат из числа исходных утверждений, то есть доказать его, опираясь на остальные постулаты и аксиомы.

За много веков было предложено много доказательств пятого постулата, но в каждом из них рано или поздно обнаруживался порочный круг (лат. circulus in demonstrando): оказывалось, что среди явных или неявных посылок содержится утверждение, которое не удаётся доказать без использования того же 5-го постулата.

Прокл (V век н. э.), опирался в своем доказательстве на допущение, что расстояние между двумя непересекающимися прямыми есть ограниченная величина; впоследствии выяснилось, что это допущение равносильно пятому постулату.

Первую известную нам попытку доказательства аксиомы параллельности Евклида предложил живший в Провансе (Франция) Лев Гарсонид (или Леви бен Гершон) (1288—1344). Его доказательство опиралось на утверждение о существовании прямоугольника.

К XVI веку относится доказательство учёного-иезуита Христофора Клавия. Доказательство основывалось на утверждении, что линия, равноотстоящая от прямой — тоже прямая.

После открытия Н. И. Лобачевским и Я. Бояи неевклидовой геометрии и доказательства её непротиворечивости стало ясно, что доказать пятую аксиому Евклида невозможно.

Литература

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home